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SUMMARY 
In order to reduce the cost of large three-dimensional calculations of steady state free surfaces, we have 
combined a time-dependent approach, a decoupling algorithm and a conjugate gradient solver along the 
lines introduced earlier by Gresho and Chan. The free surface is calculated separately by applying the 
kinematic condition to a number of faces defined on the undeformed surface. For the pseudo-time-marching 
technique we show that it is economical to adopt different time steps for the free surface calculation and the 
other fields. The accuracy of the method is tested on the well-known circular die problem; the method is then 
used to reveal the effects of inertia and shear thinning on square and rectangular dies. 
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1. INTRODUCTION 

The goal of the present paper is the development of a cost-effective method for calculating three- 
dimensional extrusion flows of generalized Newtonian fluids, together with the prediction of the 
associated free surfaces. 

The problem of three-dimensional free surface calculation has been considered by several 
authors over the last few years. Tran-Cong and Phan-Thien' have applied the boundary element 
method to extrusion processes and later extended their technique to viscoelastic flow problems.' 
In particular, Tran-Cong and Phan-Thien3 were able to calculate the shape of a die required by 
an imposed cross-section of the free jet. 

The use of finite elements for such problems was introduced by Shiojima and Sh ima~ak i .~ .~  
Their papers, however, contain little information about the numerical method and the mesh- 
updating technique. 

Finite element techniques for three-dimensional extrusion problems have been introduced by 
Karagiannis et aL6 They have extended to three dimensions the concepts introduced by Scriven 
and his collaborators (see e.g. Reference 7) for calculating free surfaces in two-dimensional flows, 
i.e. the use of spines for locating the free surface and for updating the mesh, together with the 
Newton-Raphson method for simultaneously solving the flow and the free surface. Non- 
isothermal flows have been considered in Reference 8, while coextrusion flows have been 
calculated in Reference 9. The method of spines produces some difficulties when the dies have 
sharp edges; it has been slightly modified in Reference 8 for calculating such flows. 
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A major concern is the cost of such calculations; in particular, one wishes to calculate the flow 
through a complex die together with the shape of the jet. The cross-section of the die is often 
complicated and requires a dense finite element mesh. Moreover, many polymers exhibit a 
viscoelastic character, which considerably increases the non-linear character of the problem and 
the number of variables. 

Despite their inherent qualities, the methods referred to above may turn out to be very 
expensive for solving complex flows. Boundary elements do not give rise to sparse matrices, while 
a full Newton-Raphson method prevents decoupling and leads to very large active matrices in a 
frontal solver. Our goal here is to extend earlier progress in finite element methods to extrusion 
calculations in order to reduce the computational cost. The main ideas of our work are as follows: 
(i) approach to the steady state behaviour through a transient method; (ii) decoupling of the 
velocity components, pressure and free surface calculations; (iii) use of semi-implicit techniques; 
(iv) use of alternate solvers. 

In the present paper we calculate steady state solutions; we have thus introduced a number of 
simplifications which might qualify the method as 'pseudo-transient' rather than transient. A 
minor effort would be necessary for obtaining an accurate time dependence. 

We essentially rely upon the method elaborated by Gresho and Chan" and Gresho," with a 
special emphasis on low-Reynolds-number flows. The resulting linear systems are characterized 
by positive definite, symmetric matrices; they are solved by means of the incomplete Cholesky 
conjugate gradient method." We will necessarily be brief on the method recalled in Section 2 for 
calculating the velocity and pressure. In the meantime, further progress on projection methods 
has been accomplished by Gresho13 and Gresho and Chan,14 which would in particular improve 
the accuracy of a true time-dependent solution. The free surface is represented by a finite number 
of sheets with equations of the form y = f ( x ,  z ,  t) or z =g(x, y ,  t), where x is the axial co-ordinate 
along the jet. The kinematic equation is then integrated implicitly for every sheet, with the use of 
spines. Edges are defined as the intersection of sheets; we may thus avoid the problem raised in 
Reference 8. The free surface integration is explained in Section 3. 

A predictor-corrector scheme has been implemented with a view to an automatic calculation of 
the time step (see e.g. Reference 15). Very different time steps are found for the free surface and 
velocity field calculations. In Section 4 we show that the use of different time steps for both 
subproblems requires less computer time for reaching the steady state. 

We then show in Sections 5-7 a number of illustrative examples which demonstrate in 
particular the power of finite elements for solving such flows. 

2. BASIC EQUATIONS, SPACE AND TIME DISCRETIZATION 

We wish to calculate three-dimensional flows of generalized Newtonian fluids for which the 
equations of motion are given as follows: 

v.v=o, 

where v denotes the velocity vector, p the pressure and p the density. The shear viscosity 
depends upon the local shear rate f, which is expressed as 

3 = [2tr(dd)]'/', (2) 
where d is the rate-of-deformation tensor. In later sections we will consider a power-law fluid for 
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where K is the consistency factor and m the power index. 
The flow domain is covered by a three-dimensional mesh of eight-node brick-like isopara- 

metric elements. For the velocity field v we use a P'-Co representation vh, while for the pressure, 
ph denotes a Po-C -' representation. Let V and P denote the vectors of nodal velocities and nodal 
pressures respectively. The spatial discretization of the governing equations (1) is obtained by 
means of the Galerkin method. One then obtains the well-known set of constrained ordinary 
differential equations (see e.g. Reference 10) 

MV +N(V)V-K(V)V+ CP=f, (4) 

CTV=O, ( 5 )  

where a dot stands for the time derivative. In the system (4), (5),  M stands for the mass matrix, N is 
the advective matrix, K is the diffusive matrix which depends upon V through .3, while C is the 
gradient matrix and CT the divergence matrix. The nodal force vector f contains the contribution 
of the body and surface forces. The initial conditions have the form 

with 
V(0) = VO, 

CTVO = 0. 

Our present goal is to solve steady state extrusion; we might thus as well solve the steady state 
equations 

N(V)V - K(V)V + CP = f, 

CTV=O. (8) 
However, in view of the cost of direct solvers associated with (8) for three-dimensional flows, we 
wish to calculate the steady state as the limit of a time-dependent flow, although we are not 
basically interested by the time evolution of the flow (and of the free surface, to be considered in 
Section 3). In polymer extrusion problems the Reynolds number is typically very low; diffusion 
dominates advection in (4). 

With a view to decoupling the transient algorithm, we obtain on the basis of (4), (5) the 
consistent discretized form of the Poisson equation for the pressure by multiplying both sides of 
(4) by the matrix product CT M - ', i.e. 

(CTM-'C)P = CTM-' [f + K(V)V -N(V)V] - CTO. (9) 

In view of (5), the time derivative of CTV must vanish identically and thus CTV= - t T V .  As long 
as the mesh does not deform, CT = 0 and the last term on the right-hand side of (9) should also 
vanish. 

Let us assume that the velocity field is known at time t, and takes the value V". In our 
calculations we decouple velocity and free surface calculations. Thus at time t ,  we consider a fixed 
mesh on which we calculate the new velocity field V"+' at time t , ,  =t,+At. We first calculate a 
pressure field f! on the basis of (9), i.e. 

(CTM-' C)P= CTM-' [f" + K(V")V"-N(V")V"] + CTV"/At. (10) 
All matrices are calculated at time t,. 
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In writing (lo), we have substituted 

We have imposed 

in calculating P in view of (9, but we have acknowledged that CTV" may not vanish because V" 
was calculated on the mesh at time tn - '. 

Next we discretize (4) by means of an implicit scheme for the diffusive terms and an explicit one 
for the advective terms, i.e. 

(13) M(V"+ ' -V")/At +N(V")V"-K(V") [aV"' ' + (1 - a)V"] + @= f "; 
for a =O and 1 we obtain Euler's explicit and implicit schemes respectively (see e.g. Reference 16, 
Chap. 21). We use a = 1 throughout the rest of the paper. We note that, for the sake of simplicity, 
K is calculated in terms of V" without any effect on the steady state solution. We may thus rewrite 
(13) as 

[I- AtaM- ' K(V")]V"+ ' = V" + At M -  ' [f" +(1- a)K(V")V"-N(V")V"- Cfr] . (14) 

The use of an implicit scheme would not a priori require mass lumping as suggested by the inverse 
M-' in (14); however, mass lumping makes it possible to calculate the matrix CTM-'C on the 
left-hand side of (10). It also offers the advantage that the velocity field can be obtained with fewer 
iterations using an iterative solver, because the resulting matrix is more diagonally dominant. 

The matrix I-AtaM-'K(V") is symmetric and positive definite and is thus endowed with 
desirable properties for the use of a conjugate gradient solver. However, its size is quite large since 
V contains the nodal values of all three velocity components. In order to work with smaller 
systems, we subdivide the matrix K as 

K=K'+K2,  (15) 
where K' is made of the diagonal square submatrices corresponding to individual velocity 
components, while K2 corresponds to those terms of K which couple the various velocity 
components. We have thus slightly modified (14), which now becomes 

[I - At aM- ' K' (V")]V"+ ' =V" + AtM - ' [f" + (1 -a)K'(V")V" + K2(V")V"-N(V")V" -Cfr]. 

(16) 
We note that the system (16) may be solved through three much smaller subsystems with 

symmetric and positive definite matrices. 
Once Vn+' has been calculated, it is interesting to verify how well our hypothesis (12) is 

satisfied by the solution of (16). Applying the operator CT on both sides of (16), we find, with the 
help of (10). 

The error on the divergence of V"" is of order At'; it vanishes in the steady state. 
The systems (10) and (16) are solved by means of an iterative preconditioned conjugate gradient 

method as described in Reference 10. The preconditioning is an incomplete Cholesky decomposi- 
tion coupled with a diagonal scaling.12 

CTV"+ ' = aCTM- ' K' (V") (V"+ ' - V")At. (17) 

3. CALCULATION OF THE FREE SURFACE 

In extrusion problems a part of the flow domain is surrounded by a free surface which is generally 
expressed by an equation of the form 
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Let a(x,t) denote the outer normal to the surface; the surface force acting on it is given by 

t = c - Pg + W R l +  1/R, )I 0, (19) 
where p s  is the pressure in the outer gas, u is the surface tension coefficient and l/R,+l/R, 
denotes the Gaussian curvature. We will assume in the present paper that u vanishes; a finite 
element representation of surface tension in three-dimensional problems may be found in 
Reference 17. 

The kinematic condition expresses that the free surface is a material surface, i.e. 

D ah 
- h(x, t )=- -+v  V h  =O. Dt at 

In order to discretize the kinematic condition, let us decompose the surface into a number of faces 
on which we may write (18) as either 

h(x, t )  = z -f(x, y ,  t )  = 0 (21) 

(22) h(x, t )=y-g(x ,  Z, t ) = O ,  
or 

where we select the Cartesian co-ordinate x in the direction of the jet. In Figure 1 we show the 
typical example of a jet with a convex cross-section where both faces are easily identified. For 
more general problems we may consider an arbitrary number of faces for describing the surface of 
the jet. 

Let us consider in more detail the discretization and time evolution of a face given in the 
form (21). Equation (20) then becomes 

a !  a !  af -+u - + u  - - w = o ,  
at ax ay 

where u, u, w are velocity components in the x-, y- and z-directions respectively. A similar analysis 
holds for a surface given by (22). We select a finite element representation for the functionfgiven 
as 

k 

i =  1 
fix, y ,  t ) =  C fi(t) 4i(xsy), (24) 

Figure 1. General configuration of extrusion die and extrudatc 



348 0. WAMBERSIE AND M. J. CROCHET 

where k is the number of nodes on the face,fi(t) are the z-co-ordinates of the nodes and $i are 
P1-Co shape functions. Applying the Galerkin formulation to (23), we obtain a set of equations of 
the form 

M P + N(V)F - M W = 0, (25) 
where F, V and W denote the vectors of nodal values ofJ u, u and w on the face, N'(V) denotes the 
advective matrix and M' stands for the mass matrix. The time discretization of (25) is written as 

M'(Fn+l - F")/At +N(V"+')F"+' - M W " +  =O. (26) 
The system (26) contains a small number of variables as compared to the total number of 
unknowns. Its size justifies the use of a direct solver for calculating F"+l.  

The free surface algorithm has been tested on the classical problem of Newtonian extrudate 
swelling from a slit die, with an infinite extent in the transverse direction. Figure 2(a) shows the 
finite element mesh together with the shape of the free surface calculated by means of the Galerkin 
formulation (25) of the kinematic condition. One observes the appearance of small wiggles on the 
free surface near the exit of the die. We relate such wiggles to the fact that the kinematic condition 
(23) is of the hyperbolic type, for which the Galerkin formulation is not optimal. We have thus 
introduced the streamline upwind/Petrov-Galerkin formulation (SUPG)18 for calculating the 
discretized kinematic equation (25). Figure 2(b) shows the shape of the free surface obtained with 
SUPG instead of Galerkin; we find that the free surface does not exhibit the wiggles shown in 
Figure 2(a). 

The system (26) is solved separately for each face of the jet. In order to describe the procedure 
used for obtaining the total surface of the jet at time t,+ , let us concentrate on Figure 3 to the 
outer surface of a jet flowing through a die of rectangular shape. We first calculate the co- 
ordinates zi of the nodes of face 1. Next we calculate the co-ordinates yi of the nodes of face 2. We 
note that the corner node belongs to both faces and receives two locations at time t,+ 1. The final 
position of the corner is obtained by extrapolation. Next we relocate the nodes on the deformed 
faces along geometrical proportions selected at the outset. The nodes in a cross-section with 
constant x are then relocated on the basis of the outer surface nodes by means of either a 
proportionality rule or a Laplacian distribution. Since we are not interested in the transient 
solution of the problem, and in view of the smallness of the time steps, we find it unnecessary to 
recalculate the velocity field at the relocated nodes. The interest of subdividing the outer surface 
into a number of faces is that the corner nodes are free to move arbitrarily and are not bound to 
slide along a preselected spine. 

a 

- x  

t I I I l I -  ,x 

1 I I 1  b 

Figure 2. Calculation of planar die swell when free surface is calculated (a) without and (b) with a streamline 
upwind/Petrov-Galerkin formulation 
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Figure 3. Relocation of surface nodes and comer node in cross-section of extrudate 

The time-marching technique now consists of the following steps. 

(i) At time t,, calculate the pressure field P by solving (10). 
(ii) Calculate the velocity field V"+' by solving (16). 
(iii) Calculate the new location of the free surface F"+ by solving (26). 
(iv) Relocate the nodes on the free surface and modify the finite element mesh. 

4. SELECTION OF THE TIME STEP 

An appropriate selection of the time step is a major ingredient for our transient calculation 
towards a steady state. In the early stage of our work we performed a number of calculations with 
a fixed step; we found it difficult to choose an appropriate time step for reducing the computer 
time while maintaining the stability of the algorithm. 

The use of a predictor-corrector scheme has allowed us to implement a dynamic selection of 
the time step based on the comparison between the predicted and corrected values at the last 
i terati~n. '~ Let us briefly review its background. Let x(t) denote a function of time which at t = O  
takes the value x,, while x, and x, denote its first and second time derivatives. At time At, we 
have 

x ( A ~ ~ ) = x ~ + A ~ , ~ ~ + A ~ ~ ~ ~ / ~ + O ( A ~ ~ ) .  (27) 

~ ~ ( A t o ) = ~ o + A t o X o ,  (28) 

With a first-order predictor, starting from the correct values at time t=O,  we have 

where xP(Ac,) denotes the predicted value. By means of a first-order implicit scheme the 
calculated value xC(Ato) is given by 

thus 
( ~ " - x , ) / A t ~ = ( 1  -a )xo+ax(At )=x ,+c tA t ,xo+O(At~) ;  (29) 

(30) xc = x, + At, x, +a At; xo + O(At %). 

From (28) and (30) we find that 

xc -xp = a At; xo + O(At%), 
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while from (27) and (30) we have 

x c - x ( A t o ) = ( a - 3 ) A t ~ x o  + O(Ati). (32) 

d o = x c - x ( A t o ) = ( a - ~ ) / a ( x c - x P ) + O ( A t ~ ) ,  (33) 

Finally, from the last two equations we have, when af0,  

where do denotes the difference between the calculated and exact values. 

At,+At, is given by 

thus on the basis of (32)-(34) we have 

If we now perform an additional iteration with a time step Atl ,  we find that the error at time 

dl =(a -$)At f XI + O(At ;); (34) 

where double bars denote a suitable norm. We wish to select a time step At, in order to minimize 
the error lid, 11, which we evaluate by means of a scalar E such that 

lldl II = E II xc II * (36) 
In view of the fact that Ilxl 11 = I(xo (1 + O(At, ), we obtain, with the help of (33), when a>+, 

In our applications we select values of E typically of the order of 10-3-10-4. 
In the present application it is not easy to select a suitable norm because we are calculating 

variables of a different nature, i.e. the velocity field and the nodal co-ordinates on the free surface. 
We have resorted to a separate calculation of a time step At" based on the velocity field and a time 
step At' based on the free surface. Our first approach was to select 

At = Min(At', At'), (38) 
which is mandatory if one wishes to attain a given accuracy for the transient calculation. 
However, in the extrusion problems to be discussed below, we found that in general At' is much 
larger than At' on the basis of (37). It is then tempting to perform an iterative calculation towards 
the steady state with two different time steps: one for the velocity and pressure fields and one for 
the free surface. Quite clearly, we then lose the accuracy of the transient calculation, but 
numerical experiments show an important acceleration towards the steady state. The latter is 
attained when for each separate field the maximum relative error between two successive steps lies 
below a given scalar of the order of 

In order to demonstrate the efficiency of our approach, let us consider the typical example of 
extrusion from a square die. The undeformed finite element mesh is shown in Figure4. We 
consider the creeping flow of a Newtonian and a power-law fluid. The advective terms in the 
momentum equations are not taken into account, but we select a non-vanishing value of p for a 
'transient' Reynolds number of one. We examine three strategies for the selection of the time step. 

(i) We choose a fixed time step At such that 

At = h/V, (39) 
where h is the smallest element size in the flow direction while Pis  the average velocity in 
the channel. 
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Figure 4. Finite element mesh for testing selection of time step 

Table I. Number of time steps and computer time needed for reaching convergence with 
various iterative schemes 

Newtonian fluid - Power-law fluid 

Method Iterations Relative CPU time Iterations Relative CPU time 

1 642 1.54 > 2000 > 5.42 
2 675 2-04 > 2oco > 5-85 
3 450 1 396 1 

(ii) The time step is calculated on the basis of (37) and (38), with E =  

(iii) We adopt different time steps for calculating the free surface and the velocity field, with 
E =  for both fields. 

In all three cases the relative convergence criterion towards the steady state is 
Table I shows the number of time steps needed for reaching convergence for a Newtonian as 

well as a power-law fluid with a power index m=0.2. The computer time has been reduced by a 
factor of four in the Newtonian case and more than five in the power-law case when one uses 
different time steps instead of (38). These conclusions are evident in Figure 5, where we show the 
evolution of the transverse dimension of the extrudate as a function of the number of time steps. In 
Figure 5(a) for the Newtonian case we find that applying (38) leads to a slow approach towards 
the steady state. The situation is not as bad for a constant time step, but its selection is often an 
educated guess. However, with different time steps for both fields we find a small initial overshoot 
followed by a fast approach towards convergence. A similar behaviour is observed in Figure 5(b) 
for the power-law fluid. 



352 

20. 

15. 

10. 

5. 

0. 

4. 

0. WAMBERSIE A N D  M. J. CROCHET 

2. 

/ - - - i i i  1. 

i i  

i 0. 

-1. 

-2. 

-3. 

-4. 

Iter 

100 200 0 100 200 

a b 

Figure 5. Evolution of swelling ratio as a function of number of iterations for (a) a Newtonian fluid and (b) a power-law 
fluid (i) fixed time step; (ii) single optimized time step; (iii) separate optimized time steps 

5. TEST PROBLEM: THE CIRCULAR DIE 

The numerical simulation of extrusion from a circular die has been available for a long time.lg 
For creeping Newtonian flow the calculation gives a swelling ratio of 12.7% with a highly refined 
mesh. The swelling ratio is defined as the relative increase of the radius of the extrudate to that of 
the die. Here we solve the same problem with a full three-dimensional geometry. However, we 
take into account the presence of two planes of symmetry and we perform the calculation on one- 
fourth of the flow domain. 

We impose no-slip conditions on the wall of the tube and a fully developed velocity profile in 
the entry section. Vanishing normal and tangential surface forces are imposed on the surface of 
the jet and in the last section. The lengths of the tube and jet are respectively equal to three and 
four radii of the die. 

We have solved the same problem with three finite element meshes with non-uniform spacing. 
The mesh size is multiplied by two-thirds from mesh 1 to mesh 2 and by one-half from mesh 1 to 
mesh 3. Figure 6 shows the circular and longitudinal cross-sections, while Table I1 contains the 
numerical data and the swelling ratio. The ‘element size’ corresponds to the ratio of the axial 
element length at the lip to the radius of the die. For calculating a creeping flow we again omit the 
advective terms in the momentum equations, but we preserve the velocity time derivatives with an 
equivalent Reynolds number of one. For all cases the calculation was interrupted when the 
relative change between two successive time steps was less than 

With mesh 3 we find a swelling ratio of 13.07%. With a two-dimensional steady state 
formulation and an equal number of nodes in the plane of symmetry we have found a swelling 
ratio of 13.04%. In Figure 7 we show the contour lines of the axial velocity component in the 
plane of symmetry for meshes 1-3 and for the corresponding axisymmetric solution. The 
comparison is fully satisfactory. 
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Figure 6. Finite element meshes used for testing accuracy of method with a circular die 
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Figure 7. Contour lines of axial velocity field for meshes of Figure 6 and a two-dimensional solution on mesh 3 

,Table 11. Numerical data for circular extrudate swell calculation 

Degrees Element Swelling 
Mesh Nodes Elements of freedom sue ratio (YO) 

1 361 216 1354 0.04 13.39 
2 1036 729 3949 0026 13.36 
3 2257 1728 8888 0.02 13.07 
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6. EXTRUSION FROM A SQUARE DIE 

We consider the extrusion from a die of square cross-section with sides of length 2H. The flow 
domain is characterized by a jet length equal to 6H and a die length of 4H. We impose no-slip 
conditions on the walls of the die and vanishing surface forces on the jet. In the entry section we 
impose a biquadratic velocity field, which evolves to a fully developed profile within a short axial 
distance. In order to verify the convergence of our results, we have used three finite element 
meshes, which cover one-fourth of the flow domain in view of the symmetry of the problem. In 
Figure 8 we show the finite element distributions in the axial cross-section and in a plane of 
symmetry, while the numerical data are collected in Table 111. For the square die we calculate two 
swelling ratios: Sw, indicates the swelling along the median of the cross-section, while swd 
indicates the swelling along the diagonal. 

6.1. Creeping NewtonianJlow 

We have calculated the swelling of a creeping Newtonian jet with the three meshes of Figure 8. 
The swelling ratios are given in Table 111, while a view of the deformed mesh based on mesh 2 is 
given in Figure9(a). The figures in Table111 are a clear indication of the good convergence 
properties of the method. We note that values of Sw, and Sw, of 18% and 3.4% respectively have 
been obtained in Reference 1 with a boundary element method. In Reference 6, values of 18.4% 
and 2.9% were found for Sw, and Swd respectively on a mesh with 16 500 degrees of freedom. 
Mesh 3, with 6971 degrees of freedom, leads to swelling ratios of 18.5% and 2.9%. 

Figure 8. Three finite element meshes used for calculating extrusion from a square die 

Table 111. Numerical data for square extrudate swell calculation and creeping 
Newtonian swelling ratios 

Degrees Element 
Mesh Nodes Elements of freedom size Sw, (%) Sw, (%) 

1 450 272 1722 008 199 3.5 
2 900 600 3480 005 189 3.0 
3 1792 1323 6971 003 185 2.9 
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Figure 9. (a) Newtonian extrusion from a square die. (b) Fully developed cross-sections of extrusion for Re =0-100. 

6.2. Newtonian flow with inertia 

The creeping flow results have been obtained by omitting the advective terms in the 
momentum equations. Let us now examine the interesting effects of inertia upon the shape of the 
extrudate. In what follows, the Reynolds number has been defined as 

when VmaX is the maximum axial velocity of the biquadratic inlet velocity profile. A more standard 
definition of the Reynolds number is given by 

Re = p l72H/q, 

where V is the average velocity in the die. By calculating the flow rate in our examples, we find 
that &=0.85Re. 

The calculations have been performed with mesh 2 shown in Figure 8. In Figure 9(b) we show 
the successive jet profiles obtained when Re increases from 0 to 100, and the shape of the 
deformed mesh at Re= 100. It is interesting to observe that the jet is approaching a rounded 
shape at Re = 50 and that there is little difference between the shapes obtained at Re = 50 and 100. 
The swelling ratios Sw, and Sw, are given in Figure 10 as a function of the Reynolds number. 

6.3. Shear-thinning fluid 

A significant advantage of the present iterative technique is that the computer time required for 
calculating the flow of a shear-thinning fluid is essentially the same as for a Newtonian fluid. The 
velocity profile does indeed adapt to the power-law behaviour in the course of the time 
integration. 

We have calculated the extrusion from a square die for a power-law fluid with a viscosity given 
by equation (3). In the absence of inertia effects the governing non-dimensional parameter is the 
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Figure 10. Evolution of swelling ratios as a function of Reynolds number 
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Figure 11. (a) Extrusion of power-law fluid from a square die. (b) Fully developed cross-sections of extrudate as a 
function of power index 

power index rn in (3). We have used mesh 2 in Figure 8 for calculating the flow at various values of 
the power index, In Figure 11 we show the successive shapes of the final cross-section of the jet 
when m decreases from 1 to 0.2. As we might expect, the shear-thinning behaviour gives rise to a 
final shape which is approaching a square. This is clearly visible in Figure 11, where we also show 
the shape of the deformed finite element mesh at rn=0.2. The values of the swelling ratios Sw, and 
Sw, are given in Table IV as a function of the power index. 
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Table IV. Swelling ratios as a function of power index 

Power index m SW,( Yo) Sw,( %) 

1 
0 8  
0.6 
0 4  
0.2 

18.9 3.0 
14.0 0.2 
8.7 - 2.7 
3.1 - 5.8 

- 1.7 - 8.5 

a b 

X 

Figure 12. (a) Geometry of die. (b) Converged finite element mesh. (c) Cross-section of die for generating a square 
extrudate 

6.4. Die design 

In an earlier paper, Tran-Cong and Phan-Thien3 have shown that it is necessary to use a star- 
shaped die in order to obtain a free jet of square cross-section. With the present example we wish 
to show that our method is able to generate the same type of result, together with the flow 
through a complex die. 

The geometry of the problem is shown in Figure 12(a). A channel of square cross-section is 
linked to a short die which is itself followed by the jet. We consider a power-law fluid with an 
index m of 0.7. The initial cross-section of the die is square, while the jet exhibits a convex shape as 
shown in Figure 9. We can then apply a correction to each external node of the die in a direction 
opposite to the deviation from a square shape, relocate the internal nodes on the basis of a 
proportionality rule and recalculate the shape of the extrudate. After five iterations one obtains a 
relative deviation with respect to a square shape which is less than 

The final shape of the die and jet is shown in Figure 12(b), while the cross-section of the die is 
shown in Figure 12(c). As one might expect, the bulging from a square die is compensated by a die 
with concave faces. 



358 0. WAMBERSIE A N D  M. J. CROCHET 

7. EXTRUSION FROM A RECTANGULAR DIE 

In the present section we wish to calculate the extrusion from a rectangular die with a 2: 1 aspect 
ratio. The method of Section 3 for describing the motion of the free surface is quite appropriate for 
a cross-section with corners moving in a direction which is a priori unknown. In Reference 6 it 
was assumed that corners move along previously defined spines; in such a way one removes a 
necessary degree of freedom for the motion of the corners. In the present paper both faces of the 
jet can move arbitrarily, while the corner line is defined as their intersection. 

For solving the present problem, we have again considered three different meshes; their axial 
and longitudinal cross-sections are given in Figure 13; their numerical parameters are given in 
Table V. 

In order to evaluate the swelling of the jet with respect to the die, we introduce four swelling 
ratios defirled as follows: 

SW, = (a - L)/L, S W ~  = (b - H ) / H ,  SW, = (C - L)/L, SW, = (d - H ) / H ;  (42) 

the lengths a, b, H and L are defined in Figure 14; c and d denote the horizontal and vertical 
projections of the displaced comer respectively. The values of the swelling ratios for the three 
meshes are given in Table V. The convergence properties are good, as in earlier examples; it is 
remarkable to observe that the results with a coarse mesh differ little from those with a refined 
mesh. A view of the deformed mesh and the final shape of the cross-section obained with mesh 2 
are shown in Figure 15. 

Figure 13. Three finite element meshes for calculating extrusion from a rectangular die 

Table V. Numerical parameters and swelling ratios for extrusion from a rectangular die 
~ 

Degrees of 
Mesh Nodes Elements freedom Sw, ( Y )  Sw, (%) Sw, (YO) Sw, (%) 

1 864 595 3327 14-5 24.7 998 - 11.1 
2 1344 945 5215 14.1 24.3 977 -11.09 
3 2464 1890 9605 14.1 23.3 972 - 10.65 
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0 L c a  

Figure 14. Characteristic geometrical quantities of extrudate from a rectangular die 

Figure 15. Deformed mesh and fully developed cross-section of extrudate from a rectangular die 

8. CONCLUSIONS 

We have demonstrated that the algorithm introduced in Reference 10 by Gresho and Chan can be 
extended to the numerical prediction of three-dimensional free surfaces. The combination of the 
pseudo-transient marching technique and the conjugate gradient solver allows one to limit the 
amount of memory needed for solving three-dimensional problems. In particular, the use of 
different time steps for calculating the velocity field and the free surface reduces the number of 
iterations needed for obtaining a converged steady state. In a later paper the method will be 
extended to the simulation of three-dimensional viscoelastic free surfaces, for which the stress field 
must be calculated together with the velocity and free surface. 
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